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ABSTRACT

The mechanism of the doublet at supersonic speeds is described using
elementary rhysical reasoning insofar as is possible, The cause of the
infinities introduced into the equations by the differentiation process
across the Mach cone is discussed, In addition the physical process involved ;
in passing from the fixed to the moving doublet is explained, Finally some

applications of doublets to supersonic zerodynamic problems are included,

PUBLICATION REVIEW
The publication of this report does ngt constitute approval by the
Air Force of the findings or the conclusions contained therein, It is
published only for the exchange and stimulation of ideas,

FOR THE COMMANDER:

SLIE B. WILLIAMS, Colonel, USAF
hief, Flight Research Laboratory
Directorate of Research
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TABLE OF SYMBOLS

space and time coordinates (ft) (secs.)
pressure at x, y, 3, at time t 1bs/sq ft
source strength lbs/ft

time of emission of source pulse striking the point
X, ¥, Z, at time t

vertical velocity (ft/sec)
horizontal velocity (ft/sec)
Mach angle

doublet strength 1lbs
potential (ft2/sec)
velocity of sound (ft/sec)

time of emission of fixed source pulse striking the
point x, y, 2z, at timef -

Mach number

running x, y, coordinates (ft)

1lift per unit area (#/sq ft)

angle used as integration variable

¥/x

polar angle of curve surrounding a singularity
radius of curve surrounding a singularity

y/x value corresponding to edge of delta wing




INTRODUCTION

The use of sources and doublets for the analysis of flow fields has
led to many useful results in aerodynamics, In the developments concerning
incompressible flow, the physical pictures of sources and doublets were
retained while for supersonic flow the approach has been more mathematical
in the sense that the source and doublet flows have been referred to as
particular solutions of the differential equation involved rather than
physical flows, This mathematical a;proach has the disadvantage that the
development of intxd tion by designers and engineers regarding supersonic
flows is impeded,

In reference 1, the development of supersonic theory utilizing the
source i.e,, a point in the fluid at which fluid is added or withdrawn at
a given velocity. The effect of moving the source is then derived following
the superposition method of Prandtl given in reference 2, This process
enables one to follow the physical mechanism involved in the fluid motion
around bodies moving at speeds faster than sound, Another concept des-
cribed in reference I is the pressure source in which fluid is introduced
with a certain acceleration, For many problems, the pressure source seems
to give a simpler picture of tihe flow than the veloecity source,

Some problems in fluid mechanics can be readily solved with the use of
the double source or doublet, In this case a source and sink are brought
ciose to each other but the strength times the distance is held constant,

Mathematically this situation can be represented as the derivative of the
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source along the line joining the source and sink. The pressure doublet then

corresponds to the derivative of the pressure source., The stream lines can

be readily visualized i, &: one half of the fluid goes directly from the source

to the sink and the remainder flows from the opposite side of the source to
the corresponding side of the sink,

It has been found in supgrsonic flows that the pressure of both the source
and doublet ig infinite along the Mach cone, This situation causes little
trouble in the cawe of the source but has required special mathematical tech-
nique in the case of the doublet, Another characteristic of the doublet is
the difficulty of passing from the fixed to the moving double®.. It is shown
that Prandtl's approach for the source as modified in reference 1 does not
seem to be applicable to the doublet, One of the purposes of this report is
to clarify the physics involved in the two difficulties listed above, Another
purpose is to present some of the known applications of the doublet without

the use of the special mathematical technicues normally applied,
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PART 1

SINGULARITY AT THE MACH CONE:

| The singularity at the Mach cone for the doublet is clearly tied up
. with the fact that one takes derivative of the source pressure which jumps
from zero to infinity on the Mach cone, From reference 1, we have for the

pressure of the moving source the following expression:

€ F(7)

1.1 (%, 9,2.¢) = ' ]
L ‘f) 29 &) ) 4TrEx_(Ma;.X31_rzz)J'i
where p = (pressure) 1lbs/sq.ft.
€ = strength of source ( 1lbs./ft,)
X, ¥, 2 = coordinates in the moving system (ft.)
M=

Mach number of source moving along the x axis in the
negative direction

'Y. starting time of source sriking the point x, y, 2z, at
time t

Toy . JOCVETPFHY ¥ 72
C

Am

For the case where the source strength is steady i.e., F(T') = 1 ’
there will be two waves striking the point x, y, %z at each value of time
i.e., the backward moving part of one wave and the forward moving part of

another wave emitted at an earlier time. The steady state expression is

therefore:
1.2 b(x9,7) = € v L
| AT [ x>- (> 1X9*+ 23] *
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This wave will accelerate the air particles according to Newton's Law
i.e,, proportional to the pressure gradient, Application of this formula
demonstrates the cause of the mathematical difficwlities in handling doublets

at supersonic speeds i.e,:

= M) Z. w

3 SR . S nc e U
AL AT [x* ~(m2(w-r23)] %

Considering this expression, we se: that SZP always has the same sign

behind the Mach cone and all particles would be accelerated down., However

as the particle enters the Mach cone it will be accelerated up since the
pressure jumps from zero to infinity. This upward acceleration which is
neglected in the usual computation cancels the infinite downward acceleration
which gives rise to the infinite velocity obtained in the mathematical pro-

cedure as follows:

L4

X
2
W= EMNZ dx %

2TV | X3~ (MY 2T ]
x*l

where the ¥ refers to the value of x which will cancel the denominator i.e.,
the point where the particle is at the Mach cone, The integral yields the
expressions

X
€ XL

ameu | (Y%2?) \Ix‘-(M%—ani;zl)
x‘

1.5 W=

so that substitution of the limit x¥* gives an infinite velocity everywhere,
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From simple acoustic theory, the velocity due to a plane wave is ‘P /pg .
Since the Mach cone appears plane to a particle very close, this formula
can be used to evaluate the axially symmetric velocity caused by the positive
pressure jump just ahead of the Mach cone, The vertical velocity caused by

tais Jjump is:

L6 W= -}’W;__ZC°56~ € cCog 2z
. PEVNRZ2 T aTpe (O V¥R VxR maXenD)

where fs is the Mach angle,

‘( x,
Now 5%5;5..: My and = M2 o that the infinite

X
U (V= Y
velocity due to the acceleration just behind the Mach cone is cancelled out
by the infinite velocity due to the pressure jump just in front,
The above derivation gives a physical exg;anation of the infinities
wnich arise in supersonic tieory and which have recuired various matiematical
schemes such as Hadamard's method,

The velocity caused by a pressure source at the origin is therefore

given by the expression:

1.7 W= € XZ
ATEU (Y2422) Yx2 (mEiXy*423)

The velocity caused by a doublet is obtsined by taking the derivative i.e.,
w= € {(Xz. (M2nZ 3, +
IMeY ((Y*+23) (K 2 (TN +z) 2

1.8
2, EY A a 2 - 2 X 2:]-
YHZE Y XSCR9%ZY) (G VX (M 942
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We can obtoin eruntion 1.9 directly vy consioering oo el oo lun for thc

pressure doutlet,

1.9 P - €'(m=N72

2T [x 2~ (XY +zz)]

The vertical :cceleration is:

el M { 3(M2) Z2
1,10 » = - U =
(3 {(K’*(M’—')(‘)’i-z")) At (X2~ (M2 (9™ D) &S

Integration with respcct to x yields for the velocity:

v el e s
_3z2 |7 x X3
(\)‘*Zl)" Xt PEIGED (VL) ) (7(" (MY .,.27?) %

If ve neglect the lower limit, the result is:

. w= ;m‘pu {(9‘+11) VX (M2 00N 24 22)
322 X x32Z2
TG [x: ooz (T () *+22)) %

Comparison of I.12 with I.8 s ows thot the first term of 1.12 ecuals the

second term of 1.8, Combining the other terms of I,8 yields:

3 (Mm21) x Z2(y*+2) -2x32%
(Xr - (M=t 1-2?))3/2. (‘j +z>) a

1.13
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An identical result is obtained from I.12 waich shows the identity of
the two methods but does not justify omitting tie terms with X¥* as the lower
linit, This justification is obvious however from ecuation I.5, the deriv-
ative of which with respect to Z. exactly cancelling out the iniinite terms

caused by the lower limit in I.11.
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PART II

THE MOVING DOUBLET

In reference 1, the effects of motion on the pressure or velocity source
is demonstrated in a very simple manner, A moving source is represented as a
series of fixed sources emitting fluid for short intervals of time in successive
positions corresponding to the location of the moving source, The pressure
change here is caused by overlapping of the waves at a given point in space.
This treatment essentially follows that of Frandtl given in reference 2,

The usual treatment which yields the moving aoutlet is to take the de-
rivative of the moving source altinough it is possible that a clearer picture
could be obtained by directly passins from the fixed doublet to the noving
doublet. An attempt to use the Prandtl method for this purpose proved un-
successful as explained in the derivations of this part of the report,

We consider first the potential caused by a fixed source,

wa = £ _FlET)

ndiR Y

The fixed doublet then follows from the expression for the derivative

1.2 @;._éﬁ.._.-_e_ -3z | £z
> 9 4 ( 3 YiC

This is the same expression as the velocity of fluid from the source., The

first term represents the velocity one would obtain from zn incompressible

" WADC TR-52-290 6




source, The second term represents the veloecity due to the acoustic wave
which is emitted whemever the soﬁrce changes its strength., For steady flow
behind the wave front, we can neglect the second term, It was noted in Part
I that the velocity aemsed by this second term cancels the infinity occuring
in the mathematics for velocity ealculation,

If we calculate the potential of a moving source using Prandtl's method,

we obtain the following relation (see reference 1):

_ € crY | et~
™3 @(x,g,z,t)-qm’ cr-u(x—ut»)l((t e)

Where the term on the right hand/side between the bars represents the contractién
of a wavelet due to its motion, In the_ fixed system the wave is contained
between two s?heres having the same center while in the moving syétem the
center of the two spheres is different, The potential increases in proportion
to the contraction ratio, We can visualize this as follows: each wavelets is
made up of a number of elementary wavelets wach of which represants a certain
value of the potential. When the wavelet is contracted as a result of motion,
the elementary wavelets overlap so the potentials add,

The value U{:‘ in II.3 represents the position of the elementary wavelets
striking the point x, y, 2, at time t., Now if we express €.in terms of X, ¥,

5, and tin,,  C(E-T) = U(-Vt) = ¢ Vv = (2 XTFT) the

expression for the potential in the moving system X= X-vt is:

, = €
SO B V= (D%

WADC TR~52-290 7




which is the well known result,

When we take the derivative of ? witii respect to & , the term outside
the brackets in II.3 turns out to be the velocity of the fixed source however
inside the brackets both ¥ and t|are functions of Z so that these terms
must ve included in the derivative e.pression, This means that the velocities
add because of the overlap as is the case for the rotentiel but additional
gradients in the potential existis vec: use of the contraction and because of
the change in't\with ]: viiich result in additioral velocities, This mesns
that we crnnot add the velocities at a point caused by & succession of Iixed
sources and ottain the velocity of the ioving source but we musi also add the
incremental velocities caused by the motion, 4 similar condition exists in
the case of the pressures due to a moving doublet,

If we su stitute C(t-t,)for Y which is its e¢ciuivalent we obtain for

from I1.3:

I1.5 @ = e
CH(t-t) ~ U(X-U*n)

The derivative then yields:

3 _ -ce (v -¢) 5% |
A7 7 (e (tt) —Y(x-ut))> B

Using the relation mentioned above i,e,:

11.6

a_ % a*
I1.7 r = (Xx=ut) + 92+z* = c?*(t-t\)
which gives after differentiation:
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ot Z

11.8 _ =

dZ C’(t*t‘,) — U(X-Utl)

so that:

3¢ __ €z (M=)
oz 4T (@-Ut)‘- () 9"+Z’*)) =

11.9

vhere X-ytzX in the moving system of coordinates,

This part of the report indicates that the superposition method of
Prandtl's does not seem to be applicable for the velocity due to a source or
the pressure due to a doublet, However there is no cuestion that a moving
doublet is the eguivalent of a series of fixed doucvlets each emitting suce
cessive pulses from the -osition of the moving doublet, The problem here
seems to obtain the correct value for the swmmation of .the velocities and
pressure pulses, For z more detailed understanding of the details of such

a summation, it appears that more research is needed,

WADC TR-52-290 9




PART IIX

APPLICATIONS OF DOUBLETS TO SUFLUSONIC PHROELLMS

The first step in the application of the doublet to the solution of
aerodynamic problems at supersonic speeds is to relate the doublet strength
to a quantity at the surface of the airfoil, It will be shown by analogy
with the velocity source that the strength of a pressure doublet is ecual to
the 1lift on an element dxdg of the wing surface, The pressure of a doublet
corresponds to the velocity of source since the first is obtained by the
partial derivative of the pressure source and the second by the partial
derivative of an ordinary fluid source, In a fluid source the potential and

velocity are given respectively by:

III.1 q; = —4_5!'_\‘:

III.2 §;§—~ _— € Z

327 AT Y

Equation III,1 and III.2 correspond: to a sink since the vertical
velocity is negative for positive Z and positive for negative Z . In order
to evaluate € , we assume a small area 8%&3 is represented by a distribut-
ion of sinks of uniform stren-~th per unit area i.e., € is replaced by szJ).
Very close to the surface the flow will be plane so that the velocity is given

by the volume flow per second divided b; the area i.e.

IT1.3 W = gﬁ’;i;&i

WEDC TR=52-290 10



Since WCorresponds to the pressure ‘€-is the twice the pressure on
the upper surface and & is the 1ift acting on the element AXJ). In
corresponding fashion € for a velocity doublet can be shown to be ecual
to the difference in potential times the area,

From the above, we have a relation between the 1lift on an element
on the surface of a wing and the pressure in the field. Using Newtons Law
we can compute the acceleration of the fluid from the pressure gradient and
compute the velocity by integration with respect to time,

We will consider as the first example of the method, the derivation of
the formulas for the downwash due to a lifting doublet at both subsonic and
supersonic speeds, The pressure caused by a doublet is given by the expression
derived in Part I with L&s&n substituted for G i.e.

e pxy,z,€) = LANdge (M0Z

AT (G- - )o = 73)
LLn) dfdw F () dM/dz
4T (_(r&)‘-(n‘--)(_(q-n)’%l‘]) 4
Where L Asc\ N:=1ift on the element ASJN (1bs)

£(?) = runction showing lift variation with time
. ’?" = time of emission of pressure pulse striking the point
X, ¥, Z2 at time t,
Considering first the steady stote case F(T‘)is the constant unity and ?" is

given by the relation (ieference 1.)
L
IIL.5 Cz(t-'r)a' = [(x.g}-u(t—r)j +( 3—'71)1—} yAn
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The left hand side o:f IIL5 ecuals the distance the wave travels in the
elapsed time (‘t““") and tne rigit side shows the space distance from §,n
to the point x, y, z. Solution of this enuation shows only one real root for
subsonic speeds but two for supersonic speeds, Thic means that two pressure out
waves reach each point at supersonic speeds wiere as only one occurs at sube
sonic speeds, So r(]")" 2 for M1 and R“")‘:—‘l for M<L

Newtons Law gives f.') bﬁ_E or for the steady c=se f{\g!_ ) é.!l_

Writing this ecuation for the subsonlc case give for W, the following exnres—

sion at 2= i.e., the plane of the airfoil,

x
Ldgdn (M) [ dx
4Tey A (x5 - (mr)eu-ny) 72

1.6 WY =

and after integration

o Ldde [ &9 _
1117 W= 4Tpu L<3 -h)’(b( g)"-—(nh)(v-h@ O (9"")4

Far behind the douklet we obtain:

. . Ldfdn [
II1.8 W Y Srwr

An if we integrate this ecuation for — w to #M we note immediately the
similarity between a row of doublets and a horsehow vortex extending from
-“Ntodn.

For the supersonic case we use 2 for the value offm and use the Mach

WADC TR=52-290 12




line as the lower limit, This yields:

L d§én gg (M%) dx
TPV Jxs (-0 = M*—i)(‘)-hﬁ%'

It is shown in Part I, that the lower limit of tiis interral gives a

II1.9 wW{xy) =

downwash of zero so that:

Ldgdn| x-9)
ATTPU [ (9 (6§ - (X9

If (x~§ ) is large compared to ( y-n ), III.10 ecuals I.I.8, showing

111,10 W*Y)=

the downwash at far distances from both & superscnic and subsonic doublet is
the same,

The next rroblem which will be considered here is the conically loaded
delta wing., It is convenient to use for this problem the vertical acceleration
due to a line of doublets ratiier than the vertical velocity. We obtain from

formula III.9, the result

OW _ L(§,n)dedn  (m21)
Ax ~ ampu ((x O*-(m*> -)(\Hw)‘)

III.11

We use the coordinates: “l\ ecual the tangent of the angle from the center-
line and _§ ecual the distance to the point along the K axis, The vertex of

the delta wing is at the origin and its cemterline is on the ¥ axis., Therefor

n-= -‘\s and J Sd“:§JSdh so unat‘

W L(Mdhj‘ (m>1)§d§ 3/
A% ;mpu (o-8Y= mzixy-he)')

I1I.12
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The integral here has the form gd!/X VX
X= a+b§ +c¢§"

This yields:

AW _ () di | V=Y
Q¥ ~  ampuv Chx-9)*

I11.13

The infinity along the Mach Cone of the last doublet to influence g_v.'./.
X

is thrown out since it was proved in Fart I, that the downwash is finite from
a finite doublet so that a single distributed louclet will ;ive zero, This is
not the case for%! but while this derivative has infinities at the Mach Cone,
the integrated efi’e)::t of these is zero,

In order to obtain the pressure distribution L(*‘\.) s, we must fill the
surface of the wing with lines of doublets at various angles Ti.l\—. ’h from

“%(\,:x«él to +\=+€ where € is the tangent of the half angle of the ving., The

integral equation is 3

'3
oW _ _ Vx:(mpy? " Ly dh
3x ~  ampu Lz (hx -9)*

IIT.14

We interpret III1.1l) in the same way we consider z vortex line in subsonic
flow because of the similarities of the infinite velocities occurin in the two
types of flows., For example a line vortex in subsonic flow located at X gives

2 Cownwash.

277 (x-X) dvi AT x=X)*

WADC TR-52-290 14

II1.15 W= a and W - r




The W in III,1l4 due a single line of doublets must therefore exhibit an
infinite velocity of the form (%X-S)

To solve the integral equation III.l, i.e., we Meed the function L{Wwhich
will give g—e-‘ae for h‘ ‘d and which is symmetrical with respect to the center-
line, we use l.(l\): K_ . For other values of 9% » we can utilize the results

Coh*> -Si
of the lifting-line intesral ecuation of Reference 3.

In order to-evaluate K, we calculate %¥ for ‘Wx‘) € and integrate

from the Mach lire to the wing through the singularity at the wing tip. Performing

this integrati.n yields:

dw _ K fX= (M09 (¥/x)

111,16 —_— = - - -
O X 20U X* (V) -C*)R

This integration, with respect to X  forw, can be most easily performed

by letting A= % to yield:

k (VTS R dA
apu ' ()\7-.2;{3_375_-

Veax,
We integrate I1I1I.17 by parts to obtain:

111,17 W=zuyx = ~

-

Uol = -~ K 1 “EegR A + N2 dA
R0 [TV e (R

>y
Yy -
The first integral is zero on the Mach cone and infinite at A=C .

I1I.18

This infinity however can be set equal to zero since W must be Uot on the
airfoil according to the boundary condition, Al explanation of this singularity is

given in thé discussion of leading edge suction containec in this report.

WADC TR 52-~290 15




Let us now consiler the sccond inte ral and let §= !

! ;: to iela:
111.19 Vo = K f le dt
P08 e EVEE (e

This integral is “novn Iroi previous work to be an elliptic inie rul of

the second kind, Reference 4, P, 135, Trus e obtain:

=~ Py
III,20 K= 26 U « P
E(Vl“(mh)l’-)

and the 1ift distriiution is ;iven by the exnression:

1I1T1.2 = ;l{fll):b(f)
I1.21 L(4) (it he E((" (M;_,)a:.)

Tiis well-known result is contained ir. many previous references,

WADC TR-52-290 16




NON=ST-ADY PL.iioURL JOULLETS

The non-steady pressure ioublet can be derived from the non-steady pressure
source by differentiation., The expression for the non-sterdy pressure source

is given in reference 1 as follows:

L e (M
111,22 (%,9,2,€)=
P Yy 1 &) ) 41r vx';_ (ML_‘191.+2})
where E((‘T’) represcnts the strength of the source as a function of “Mwhich is

related to X,y,22nd €by the following:

- £ — _MX Y X = (=) (It Z8)
.23 T'= ¢ c(m’zl)i C (rx)

This expression means that each point of the fluid X)V, & receives pressure
impulses at time 1’, generated by the sources at time?; In tre supersonic case
there are two nulses received simultaneously, a backward moving pulse corresponding
to the larger value of "M and a forward moving pulse corresponding to the smaller
value of 7".

ju

For an oscillating seurce represented by e e thevpressure source

expression yields:

ce jw(t- CMZ‘-—(MM)) cda“{.‘)ﬁt.(mt N9+22)
POSIZE) = o e ey

+ et (= (EI%Z)

. The pressure along the Mach Wave from both pulses has the phase lag of
wMmMx)

e.C(M\I) so that wave front has a sinusoidal spatial distribution of pressure as

IIT.24

might be expected,
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The pressure doublet iz iven uy differentiation +ith respect to Z as

mentioned above, and involves four terms i.e.,

My : 1
‘P(X;‘)Z €)= { €! (M‘_-..)z_ ciwlt "")e*ﬁ!?)ﬂ"‘”"”@‘“—‘ﬁ}

III.25

\ - .
{ (K‘«(M‘ar)(v‘+zt))”l+ —é(%') CENLD CE5.)
where the X sign means the sum of the ilus and inus terms,
The vertical acceleration of the air particlecaused Ly the doublet is given
by Newton's Law P %g:- %E .« The exression foréﬂ at Zz@is the same as
pA oL
eouation III.25 except that we must divide by 22, and set 2=0.
Suppose we desire to compute the W velocity of a particle at XY,Z~0 at
some value of time £, Ve can first consider the increment of downweash when the
particle isa X‘JQ’ 2s00f the movin- system, The vertical acceleration is given

by the pressure ;radient at X,but with a time t-?ﬁ&!& The increment ol velocity

is %“E, Q\:)& os that the cxpression for W is:

111,26 W(%4,z=0, t)=- [ (X,\) 220 t.or-x.)) dx

were x refers to the value of ) at the Mach cone, The final formula for the

dovnwash caused by a doublet is tnen:

€ '(Mm20) *"”(t )j( - 3y t‘&iﬁ) Xek (o o‘ij

w(x,y,z=0,t) = 4,,(,0

III.27

‘ [ | - 3w i |
x((x.‘- (mry) R Ty (k.- """')‘”‘)) 4%
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The solution for the atove inteszral has not ieen obtained, but some idea
of the functions involved can be obtained from the following aprroach which
involves an integration with respect tos for the source iLefore developing the
doublet.

In this approach we will integrate equation II1I.24 with respect to 'j
between the two values oi':’ which make the denominator vanish, In reference 1,

we use a substitution similar to the following:

1-
CodS 8 = V |- (n‘:-n) >

(V=) )y: ‘/ X% (M%1)Z* Sitn6

dy = Vxx (M")zzcose
so that M2

t- T& ez COSO
£ e 3v (¢~ sy [ e w eerge
A

I11.28 1; Y,2,t) =

—dw ‘b‘":' NZ2 cos0
+ e c(m=1) de

which yields

(e~

e w5 M/—?(';_n-l")
C(Mx

The pressure czused by a line of doublets is obtained from III.29 by

differentiation iet

J'“& (n&c))/ wZ
IIT.30 ’P(" M2 t) 2 2 (——‘“ 1C mz)\]
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The pressure gredient at Z#Occn be .ttzined from III1.30 by dividing by Z
and setting 2=0 , Using Newton's Law as eiitained previously for the oscill-

ating downvash, we o.tein the rollowin; ec zticn:

Jult= %) (* B Uy
III.31 w=--€'¢ J e Vi —%)J, d%,
2ev F MY, s X

The function in the above ecuation could be tabulcted to ottein Lhe
oscillating downwasn beiidnd a two-iimensional 1ifting line, For :iinite lifting-
lines a similar exrrescion is ottained exce:t tiat Jois an incoaplete inteszral,
This relation shows that type of integrals wiich may e expected from ecuation

I11.27.
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LEADING EDGE SUCTION

A suction force is provided when air flows around a corner witiout separation,
Suction occurs at the lezding edge of a sursonic airfoil or ti:e leading edge of a
supersonic airfoil wiien the edge is swept behind tue Mach cone and the airfoil
develops lift. A physical picture of the suction force is imjortant in the design
of airfoils for subsonic =nd superscnic flight,

In this part of the report, a simple mathematical calculation of the suction
force shall be given basei on linezr theory, The pressure at Xvinaused by a

subsonic doublet at ”,h) 230 is as follows:

. _oa)
e L(on) dgdn (V\~m*) Z 5

AT (%4 (- fig-mi 42)) 72
To obtain the pressure due to a line of doublets extending from M=-go to N =408
we let X:(g-h)v ME-I’ and obtain

oo fME 1
111.33 *t:: $ bYEM Z dA 30a,
4T — (4 0-M9Z2 + )

which ~ives:

III.34 *)-_— ~-L(Vi-m)2
AT (x4 (-M)Z0)
whence: -FZ- J—rﬁ"— ()(75. (|-M1)ZQ.)
{ x24(-w) 22)>
and vFY-:'-*.L,"M‘L 227X
(XD YE
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Using Newton's Law P@g’%:«% and ()u %‘g:— PZ-’ we obtain for U and W ,

the following:

111.35 W = L.ds {j-m= *
ATPY (X2 4((- M) 72

1I11.36 U = LéU i~ 8 2 Z.
B 2TV (% 24 “-Ml)zz‘)

The .elation P:-(;u\) is seen to hold between III.34 =nd III.36.

The above relations for Wand U are the same as these for a two-~dimensionsl
vortex in compressible flow wiere W in III.35 refers to the downward velocity so
tlhat sign was changed in the process of going from II1I1.34 to III.35.

For a flat plate at angle of , we use III.35 with 2= 0and¥-§substituted for x

yielding the well-known integral ecu:stion:

+b \
111.37 W= U = y (-n>- } L(§X§
ey )T &0

20Vt | buse.

Y i-m2

In order to calculate thie suction .orce we enclose the lesdin; cige with a

From reference 3 L{_g)ls siven as

. . * - . .
curve given by the ecuations «—:‘;-3~§€03¢ &z m « Un t .is curve we
b b VI-m*
calculate W and W and use the momentwa ecuavions to ottuin the force caused
by the leadinz edge. In this tre tment @is small so tiau the ronse of inte.ration

of @cen be small as iong as © M §. T.e expression for W and W on tiic curve

are as follows:
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III.38

W= ;ugo(fe *:[§Ca.se4 %] de
ST W )y [6% 3} Scesd]r+ 5294

IT1.39 - :).U, ( Ssmd /m»dg
[67)_ +5C0$§]2 S““Sln"“&

so that IIT.A40 W- LYM*y = - &r
6‘/2.4-86“‘4’

IIT.40 Wz - 22U Cas $h u = 2 um Sin BA.

Yas T (3 e

In order to calculate the suction force from III.;JO0, we need the pressure
and momentum ecuations for linearized flow retaining terms up to the second

order. These equations are derived as follows:

III.41 — Qg- = vdv +Wo +u)dv

- Uov
where (@ according to the linear theory is P = (Po ( ! "doa

.Substituting the expression for P an integration of 111,41 yields:
IIT.42 . - ® = Us¥ + %’f(;-mo‘) + X

Po |
For the momentum ecuation, we o.tain:

IIT.43 %% = ’(_)(Uo-} Vijudz, + SP vy dx

WADC TR-52-290 23




woich: ater subs izution for 1  deld ot

IIT.44 -L '——d = ‘ ~Me* *
II.. 5 At " fuoudL 4+ 0 Mo)ju dz +$qu1.

The suction force 'ith zero rressure round t. control .. is

T1T.45 = - (qamol)fu‘dz - § Vvdx

0|7

2T bl

Fos

The momentum caused by the pressure is:

4T tw
am _ d .,j cas2d 2 4/ ycos 4dd
III. L6 el = daz =] (Ces* st ) -
t -wf T T+ é_)m ©

Therefore the expressiorn lor the dre; force cons out oo would bLe expecied
from the Ymown fact that no pressure irag exists at s to.ni: o eeds,

We 11ll now consider the suction force o. a su.erscric lelia wing, Tie
lift distribution is ~iven by forumula II1.21 . . o t.at ¥is obuainca vy

diviiing this formile L, - 2PVUe

IIT.47 V= T c Q“ A ~ upper swriace

Y E(V1= (o)

€ surface
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¥ may be obtained Ly integsration of the rel:=tion él-’.-_- 3.! , or iLs
39 - X
Nevton'!s Law ecuavalent PUQQ_Y. - ~§_E . Tie exqgressionfor @Y may be
9" 39 ax

written as:

OV L 3 _CUs Ik T2 o Y
IIT.43 Ay t [Q‘*{%)"]?‘Z_E (C‘x“gl)%

How V=02 at the le.ding edre at =0 since U=eo@ st the

lezding edye., Inte ration of III.48 from Cy to% yiel s3

T T VTR E

Tte singular part of this integral is ne;lected Lecause V goes to infinity

I11.49

lll’—e u at the leﬂxlil'lg e(ige- a’ Q:".ti.o:d‘.cd (LbOVG .

At the leadin~ edre 9/‘ ecuals 'E, ard % 3650 what t..e resultant velocity

is normzl to the lezdins edge and r.as a constant vaiue. Tids mezsns tihat the flow

m

in twe=dimensioci.el in e direction normal to the leading edge. The vnolue of this

recultant velocity nenr tie leading edge is

III.50 ‘, U+ v\- - UO‘:M c T N |
4 C"—{\)&)"(E )

or letting Y =c-§ W - U°"‘VZ Vit
V2s (E)

k.

Compzrinz with III.40, ¥ and W s:ould be iven by the relations
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Voot VE VEF sin /o
vis E

U=

111,51

W = ot ,“ﬁ o Vi-my wi/}
yas &

where Wi, the Mach number normal tc the leszding edge.

A verificeticn of this formula =at 43':0 can be obtained by considering the

sinpular term in equetion 111,1€ letting Y/X =C+9

111,52 W o Mo® YT Vi~(e0e™
E V3§
and noting that (i-M) = ¥i- (":Q hast
1$+C

The suction force can be obtained in the sauwe way as in eyusticn 111.45

%;—‘:_ = 11"9 Sx V’an‘ (\)t)@," or the total suction force considering the
forward component is for both sides:

111,53 — . e[ Uow2C* Vi~ _x‘\h-M'.‘k
FE s (E)*

where JC is the length of the meximum chord,
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CONCLUSICNS
1) This report contains the derivation of the doublet flow on the basis of
physical reasohings:
. 2) The physicel picture of doublet flows permits one tc comprehend the
sigularities involved and to better appreciate some of the approximations of

linesr theory.

(ECCIIENDATICNS

1) Numerical work should be carried out to cbtain the effects of unsteady

motions on supersonic dewnwash.

2) Further work should be done to clarify the mechsnism invelved in passing

from the fixed to the moving doublet,
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